Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
JAMA Dermatol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568614

RESUMO

This case report describes tofacitinib treatment for 2 patients with pretibial myxedema.

2.
Food Funct ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650575

RESUMO

Barley, rich in bioactive components including dietary fiber, polyphenolic compounds and functional proteins, exhibits health benefits such as regulating glucose and lipid metabolism. Previous studies have found that the content and composition of free phenolic acids in barley may be significantly changed by fermentation with the laboratory patented strain Lactobacillus plantarum dy-1 (L. p dy-1), but the mechanism of enzymatic release of phenolic acid remains to be elucidated. Based on this, this study aimed to identify the key enzyme in L. p dy-1 responsible for releasing the bound phenolic acid and to further analyze its enzymatic properties. The Carbohydrate-Active enZYmes database revealed that L. p dy-1 encodes 7 types of auxiliary enzymes, among which we have identified a membrane sulfatase. The enzyme gene LPMS05445 was heterologous to that expressed in E. coli, and a recombinant strain was induced to produce the target protein and purified. The molecular weight of the purified enzyme was about 59.9 kDa, with 578.21 U mg-1 enzyme activity. The optimal temperature and pH for LPMS05445 expression were 40 °C and 7.0, respectively. Furthermore, enzymatic hydrolysis by LPMS05445 can obviously change the surface microstructure of dietary fiber from barley bran and enhance the release of bound phenolic acid, thereby increasing the free phenolic acid content and improving its physiological function. In conclusion, sulfatase produced by Lactobacillus plantarum dy-1 plays a key role in releasing bound phenolic acids during the fermentation of barley.

3.
Pediatr Neonatol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38627110

RESUMO

BACKGROUND: The aim of this study was to establish and validate a Susceptibility-weighted imaging (SWI)-based predictive model for neonatal intracranial haemorrhage (ICH). METHODS: A total of 1190 neonates suspected of ICH after cranial ultrasound screening in a tertiary hospital were retrospectively enrolled. The neonates were randomly divided into a training cohort and a internal validation cohort by a ratio of 7:3. Univariate analysis was used to analyze the correlation between risk factors and ICH, and the prediction model of neonatal ICH was established by multivariate logistic regression based on minimum Akaike information criterion (AIC). The nomogram was externally validated in another tertiary hospital of 91 neonates. The performance of the nomogram was evaluated in terms of discrimination by the area under the curve (AUC), calibration by the calibration curve and clinical net benefit by the decision curve analysis (DCA). RESULTS: Univariate analysis and min AIC-based multivariate logistic regression screened the following variables to establish a predictive model for neonatal ICH: Platelet count (PLT), gestational diabetes, mode of delivery, amniotic fluid contamination, 1-min Apgar score. The AUC was 0.715, 0.711, and 0.700 for the training cohort, internal validation cohort, and external validation cohort, respectively. The calibration curve showed a good correlation between the nomogram prediction and actual observation for ICH. DCA showed the nomogram was clinically useful. CONCLUSION: We developed and validated an easy-to-use nomogram to predict ICH for neonates. This model could support individualized risk assessment and healthcare.

5.
Cell Rep ; 43(4): 113987, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38517888

RESUMO

Cultivating drought-tolerant tea varieties enhances both yield and quality of tea plants in northern China. However, the mechanisms underlying their drought tolerance remain largely unknown. Here we identified a key regulator called CsREV, which differentially regulates xylem patterns between leaves and stems, thereby conferring drought tolerance in tea plants. When drought occurs, upregulation of CsREV activates the CsVND7a-dependent xylem vessel differentiation. However, when drought persists, the vessel differentiation is hindered as CsVND7a is downregulated by CsTCP4a. This, combined with the CsREV-promoted secondary-cell-wall thickness of xylem vessel, leads to the enhanced curling of leaves, a characteristic closely associated with plant drought tolerance. Notably, this inhibitory effect of CsTCP4a on CsVND7a expression is absent in stems, allowing stem xylem vessels to continuously differentiate. Overall, the CsREV-CsTCP4-CsVND7 module is differentially utilized to shape the xylem patterns in leaves and stems, potentially balancing water transportation and utilization to improve tea plant drought tolerance.

6.
Viruses ; 16(3)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38543789

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a highly pathogenic swine coronavirus that causes diarrhea and high mortality in piglets, resulting in significant economic losses within the global swine industry. Nonstructural protein 3 (Nsp3) is the largest in coronavirus, playing critical roles in viral replication, such as the processing of polyproteins and the formation of replication-transcription complexes (RTCs). In this study, three monoclonal antibodies (mAbs), 7G4, 5A3, and 2D7, targeting PEDV Nsp3 were successfully generated, and three distinct linear B-cell epitopes were identified within these mAbs by using Western blotting analysis with 24 truncations of Nsp3. The epitope against 7G4 was located on amino acids 31-TISQDLLDVE-40, the epitope against 5A3 was found on amino acids 141-LGIVDDPAMG-150, and the epitope against 2D7 was situated on amino acids 282-FYDAAMAIDG-291. Intriguingly, the epitope 31-TISQDLLDVE-40 recognized by the mAb 7G4 appears to be a critical B-cell linear epitope due to its high antigenic index and exposed location on the surface of Nsp3 protein. In addition, bioinformatics analysis unveiled that these three epitopes were highly conserved in most genotypes of PEDV. These findings present the first characterization of three novel linear B-cell epitopes in the Nsp3 protein of PEDV and provide potential tools of mAbs for identifying host proteins that may facilitate viral infection.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Epitopos de Linfócito B , Anticorpos Monoclonais , Vírus da Diarreia Epidêmica Suína/genética , Western Blotting , Aminoácidos
9.
Food Funct ; 15(8): 4276-4291, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38526568

RESUMO

Fermentation is an effective method for improving the nutritional quality and functional characteristics of grains. This study investigated changes in the structural, physicochemical, and functional properties of fermented barley dietary fiber (FBDF) exerted by Lactiplantibacillus plantarum dy-1 (Lp. plantarum dy-1) as well as its in vitro fecal fermentation characteristics. Lp. plantarum dy-1 fermentation remarkably changed the structure of FBDF, including the microstructure and monosaccharide components, correlating with improved water or oil retaining and cholesterol adsorption capacities. Additionally, Lp. plantarum dy-1 fermentation significantly (p < 0.05) promoted the release of bound phenolics from 6.24 mg g-1 to 6.93 mg g-1 during in vitro digestion, contributing to the higher antioxidant capacity and inhibitory activity of α-amylase and pancreatic lipase compared with those of raw barley dietary fiber (RBDF). A total of 14 phenolic compounds were detected in the supernatants of digestion and fermentation samples. During colonic fermentation, FBDF significantly increased the production of acetate, propionate, and butyrate (p < 0.05), inhibited the growth of Escherichia-Shigella, and promoted the abundance of SCFA-producing microbiota such as Faecalibacterium and Prevotella_9. In conclusion, Lp. plantarum dy-1 fermentation enhanced the physicochemical properties and in vitro fermentation characteristics of barley dietary fiber, representing a promising bioprocessing technology for modifying barley bran.


Assuntos
Fibras na Dieta , Fezes , Fermentação , Hordeum , Fibras na Dieta/metabolismo , Fibras na Dieta/análise , Hordeum/química , Fezes/microbiologia , Humanos , Microbioma Gastrointestinal , Digestão , Antioxidantes/metabolismo , Ácidos Graxos Voláteis/metabolismo , Lactobacillus plantarum/metabolismo , Fenóis/metabolismo
10.
Vet Microbiol ; 290: 110000, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278042

RESUMO

Pseudorabies virus (PRV) is an alpha-herpesvirus capable of infecting a range of animal species, particularly its natural host, pigs, resulting in substantial economic losses for the swine industry. Recent research has shed light on the significant role of cholesterol metabolism in the replication of various viruses. However, the specific role of cholesterol metabolism in PRV infection remains unknown. Here, we demonstrated that the expression of 7-dehydrocholesterol reductase (DHCR7) is upregulated following PRV infection, as evidenced by the proteomic analysis. Subsequently, we showed that DHCR7 plays a crucial role in promoting PRV replication by converting 7-dehydrocholesterol (7-DHC) into cholesterol, leading to increased cellular cholesterol levels. Importantly, DHCR7 inhibits the phosphorylation of interferon regulatory factor 3 (IRF3), resulting in reduced levels of interferon-beta (IFN-ß) and interferon-stimulated genes (ISGs). Finally, we revealed that the DHCR7 inhibitor, trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride (AY9944), significantly suppresses PRV replication both in vitro and in vivo. Taken together, the study has established a connection between cholesterol metabolism and PRV replication, offering novel insights that may guide future approaches to the prevention and treatment of PRV infections.


Assuntos
Herpesvirus Suídeo 1 , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Pseudorraiva , Doenças dos Suínos , Animais , Suínos , Herpesvirus Suídeo 1/genética , Interferons , Oxirredutases , Proteômica , Replicação Viral , Colesterol
11.
Vet Microbiol ; 288: 109931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056181

RESUMO

Since late 2011, the PRV variants have emerged in China, characterized by the increased virulence. The traditional attenuated vaccines have proven insufficient in providing complete protection, resulting in substantial economic losses to swine industry. In this study, a vaccine candidate strain, ZJ01-ΔgI/gE/TK/UL21, carrying the quadruple gene deletion was derived from the previously generated three gene-deleted virus ZJ01-ΔgI/gE/TK. As anticipated, piglets inoculated with ZJ01-ΔgI/gE/TK/UL21 exhibited normal body temperatures and showed no viral shedding, consistent with the observations from piglets treated with ZJ01-ΔgI/gE/TK. Importantly, a significant higher level of interferon induction was observed among piglets in the ZJ01-ΔgI/gE/TK/UL21 group compared to those in the ZJ01-ΔgI/gE/TK group. Upon challenge with the PRV variant ZJ01, piglets immunized with ZJ01-ΔgI/gE/TK/UL21 exhibited reduced viral shedding compared to the ZJ01-ΔgI/gE/TK group. Furthermore, piglets vaccinated with ZJ01-ΔgI/gE/TK/UL21 exhibited minimal pathological lesions in brain tissues, similar to those in the ZJ01-ΔgI/gE/TK group. These results underscore the potential of ZJ01-ΔgI/gE/TK/UL21 as a promising vaccine for controlling PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Virulência , Proteínas do Envelope Viral/genética , Vacinas Atenuadas , Vacinas contra Pseudorraiva
12.
JAMA Dermatol ; 160(1): 103-104, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37966830

RESUMO

A man in his 20s presented to the dermatology department with a monthlong history of gradually progressing papules and nodules on the face, accompanied by fever, fatigue, and weight loss. What is your diagnosis?


Assuntos
Anormalidades da Pele , Pele , Humanos
13.
J Diabetes Investig ; 15(3): 288-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013600

RESUMO

AIMS: This research aimed to investigate the specific mechanism of methyltransferase like 3 (METTL3) in the progression of diabetic kidney disease (DKD). MATERIALS AND METHODS: The model of diabetic kidney disease was established with HK-2 cells and mice in vitro and in vivo. The N6 methyladenosine (m6A) contents in the cells and tissues were detected with a commercial kit and the m6A levels of PTEN induced putative kinase 1 (PINK2) were detected with a MeRIP kit. The mRNA and protein levels were determined with RT-qPCR and western blot. The ROS, TNF-α, and IL-6 levels were assessed with ELISA. The cell proliferative ability was measured by a CCK-8 assay and cell apoptosis was determined with TUNEL staining. The HE and Masson staining was performed to observe the renal morphology. The RIP assay was conducted to detect the interaction between METTL3/YTHDF2 and PINK1. RESULTS: The m6A content and METTL3 levels were prominently elevated in diabetic kidney disease. METTL3 silencing promoted the cell growth and the expression of LC3 II, PINK1, and Parkin, while inhibiting the cell apoptosis and the expression of LC3 I and p62 in the high glucose (HG) stimulated HK-2 cells. METTL3 silencing also decreased the ROS, TNF-α, and IL-6 levels in diabetic kidney disease. PINK1 silencing neutralized the function of sh-METTL3 in the HG stimulated HK-2 cells. The HE and Masson staining showed that METTL3 silencing alleviated the kidney injury induced by DKD. METTL3 silencing decreased the m6A levels of PINK1, while increased the mRNA levels of PINK1 which depended on YTHDF2. CONCLUSIONS: METTL3 silencing could inhibit the progression of diabetic nephropathy in vivo and in vitro by regulating the m6A modification of PINK1, which depends on YTHDF2. Our research lays the theoretical foundation for the precise treatment of diabetic kidney disease and the development of targeted drugs in the future.


Assuntos
Adenina/análogos & derivados , Diabetes Mellitus , Nefropatias Diabéticas , Animais , Camundongos , Nefropatias Diabéticas/genética , Mitofagia , Interleucina-6 , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , RNA Mensageiro , Proteínas Quinases
14.
J Virol Methods ; 323: 114851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956891

RESUMO

With the rapid development of cattle industry, bovine viral diarrhea virus (BVDV) is becoming widespread in China, which causes serious economic losses to the industry. Effective vaccination and viral surveillance are critical for the prevent and control of BVDV infection. In the present study, the immunogenic domain of E2 protein of BVDV-1 was expressed by prokaryotic pET-28a vector. Monoclonal antibodies (mAbs) against E2 protein were prepared and systemically examined by western blot, immunofluorescence assay, blocking ELISA (bELISA) and virus neutralization test (VNT). The mAb 1E2B3, which showed good reactivity and neutralizing activity to BVDV-1 strains, was selected for ELISA establishment. After a series of screening and optimization, a novel bELISA for highly sensitive and specific detection of BVDV-1 antibodies was established, using HRP-labeled 1E2B3 and recombinant E2 protein. ROC analysis of 91 positive and 84 negative reference bovine serum samples yielded the area under the curve (AUC) of 0.9903. A diagnostic specificity of 96.43 % and a sensitivity of 95.6 % were achieved when the cutoff value was set at 24.31 %. There was no cross reaction to the positive sera of classical swine fever virus (CSFV), BVDV-2, border disease virus (BDV), bovine parainfluenza virus type 3 (BPIV3), infectious bovine rhinotracheitis virus (IBRV), foot-and-mouth disease virus (FMDV), Mycoplasma bovis (M.bovis) and Brucella. The total agreement rate of bELISA with VNT was 93.96 % (249/265). In addition, the result of bELISA was positively correlated with neutralizing antibody titer, and the bELISA could well distinguish the serum samples before and after BVDV vaccination. These results indicate that the established bELISA in this study is specific, sensitive, simple and convenient, which provides technical support for the vaccine efficacy evaluation, prevention and control of BVD in the future.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Animais , Suínos , Bovinos , Anticorpos Monoclonais , Ensaio de Imunoadsorção Enzimática/métodos , Anticorpos Antivirais , Proteínas Recombinantes , Diarreia , Doença das Mucosas por Vírus da Diarreia Viral Bovina/diagnóstico , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle
15.
Vet Res ; 54(1): 124, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124181

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) infection has caused huge economic losses in global swine industry over the last 37 years. PRRSV commercial vaccines are not effective against all epidemic PRRSV strains. In this study we performed a high-throughput screening (HTS) of an FDA-approved drug library, which contained 2339 compounds, and found vidofludimus (Vi) could significantly inhibits PRRSV replication in Marc-145 cells and primary porcine alveolar macrophages (PAMs). Compounds target prediction, molecular docking analysis, and target protein interference assay showed that Vi interacts with dihydroorotate dehydrogenase (DHODH), a rate-limiting enzyme in the de novo pyrimidine synthesis pathway. Furthermore, PRRSV infection was restored in the presence of excess uridine and cytidine which promote pyrimidine salvage, or excess orotate which is the product of DHODH in the de novo pyrimidine biosynthesis pathway, thus confirming that the antiviral effect of Vi against PRRSV relies on the inhibition of DHODH. In addition, Vi also has antiviral activity against Seneca virus A (SVA), encephalomyocarditis virus (EMCV), porcine epidemic diarrhea virus (PEDV), and pseudorabies virus (PRV) in vitro. These findings should be helpful for developing a novel prophylactic and therapeutic strategy against PRRSV and other swine viral infections.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Di-Hidro-Orotato Desidrogenase , Simulação de Acoplamento Molecular , Linhagem Celular , Replicação Viral/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Pirimidinas/farmacologia
16.
Viruses ; 15(10)2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896858

RESUMO

The African swine fever virus (ASFV) is one of the most important pathogens that causes huge damage to worldwide swine production. The pI215L protein is found within the virion and expressed at a high level in infected porcine alveolar macrophages (PAMs), indicating a possible role of pI215L protein in ASFV detection and surveillance. In the present study, female BALB/c mice (5-6-week-old) were immunized with rpI215L protein, and six hybridomas, 1C1, 2F6, 2F10, 3C8, 5E1 and 5B3, steadily secreted anti-pI215L monoclonal antibodies (mAbs). Among them, 1C4, 5E1, and 5B3 had the IgG1 isotype with a Lambda light chain, 2F10 and 3C8 had the IgG1 isotype with a Kappa light chain, and 2F6 had the IgG2a isotype with a Kappa light chain. Western blot showed a good reactivity of the six mAbs against ASFV. Eight truncated polypeptides were produced for epitope mapping. Two novel B cell epitopes, 67LTFTSEMWHPNIYS80 and 167IEYFKNAASN176, were identified by the mAbs. Further analysis revealed that 2F6 mAb could be widely used in ASFV surveillance and 5B3 mAb might serve as a tool in the distinguishment of different ASFV genotypes. This study provides tools of monoclonal antibodies for further study of I215L function and contributes to the development of serological diagnosis and vaccine research.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Camundongos , Suínos , Feminino , Animais , Vírus da Febre Suína Africana/genética , Anticorpos Monoclonais , Mapeamento de Epitopos , Imunoglobulina G
17.
J Virol ; 97(10): e0104523, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37811994

RESUMO

IMPORTANCE: Senecavirus A (SVA) is an emerging picornavirus associated with vesicular disease, which wide spreads around the world. It has evolved multiple strategies to evade host immune surveillance. The mechanism and pathogenesis of the virus infection remain unclear. In this study, we show that SERPINB1, a member of the SERPINB family, promotes SVA replication, and regulates both innate immunity and the autophagy pathway. SERPINB1 catalyzes K48-linked polyubiquitination of IκB kinase epsilon (IKBKE) and degrades IKBKE through the proteasome pathway. Inhibition of IKBKE expression by SERPINB1 induces autophagy to decrease type I interferon signaling, and ultimately promotes SVA proliferation. These results provide importantly the theoretical basis of SVA replication and pathogenesis. SERPINB1 could be a potential therapeutic target for the control of viral infection.


Assuntos
Quinase I-kappa B , Picornaviridae , Serpinas , Replicação Viral , Autofagia , Quinase I-kappa B/genética , Imunidade Inata , Picornaviridae/fisiologia , Transdução de Sinais , Serpinas/genética , Interferon Tipo I
18.
Int J Biol Macromol ; 253(Pt 6): 126861, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37714241

RESUMO

Bioactive polysaccharides known as the biological response modifiers, can directly interact with intestinal epithelium cells (IEC) and regulate key metabolic processes such as lipid metabolism. Here, the coculture of Caco-2/HT29 monolayer (>400 Ω × cm2) and HepG2 cells was developed to mimic the gut-liver interactions. This system was used to investigate the effects of raw and fermented barley ß-glucans (RBG and FBG) on lipid metabolism by directly interacting with IEC. Both RBG and FBG significantly and consistently reduced the lipid droplets and triacylglycerol levels in monoculture and coculture of HepG2 overloaded with oleic acid. Notably, FBG significantly and distinctly elevated PPARα (p < 0.05) and PPARα-responsive ACOX-1 (p < 0.01) gene expressions, promoting lipid degradation in cocultured HepG2. Moreover, the metabolomics analyses revealed that FBG had a unique impact on extracellular metabolites, among them, the differential metabolite thiomorpholine 3-carboxylate was significantly and strongly correlated with PPARα (r = -0.68, p < 0.01) and ACOX-1 (r = -0.76, p < 0.01) expression levels. Taken together, our findings suggest that FBG-mediated gut-liver interactions play a key role in its lipid-lowering effects that are superior to those of RBG. These results support the application of Lactiplantibacillus fermentation for improving hypolipidemic outcomes.


Assuntos
Hordeum , beta-Glucanas , Humanos , Hordeum/metabolismo , PPAR alfa/metabolismo , Fermentação , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Células CACO-2 , Fígado/metabolismo , Triglicerídeos/metabolismo
19.
Plant Foods Hum Nutr ; 78(4): 683-690, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688685

RESUMO

Cinnamaldehyde is an excellent natural antioxidant with high antioxidant activity, but its function in food or human digestive tract under acidic conditions remains to be studied. The effects of cinnamaldehyde in the presence of lactic acid on oxidative stress of Caenorhabditis elegans and the underlying molecular mechanisms were investigated in the present study. Results showed that cinnamaldehyde with or without lactic acid exhibited good antioxidant ability, represented by high SOD and CAT activities in C. elegans, while lactic acid exerted no effect on the antioxidant enzymes. Trace elements, like Cu, Fe, or Se, are important for the activities of antioxidant enzymes. Data of metal elements analysis revealed that cinnamaldehyde made big differences on the levels of Mn, Cu, Se of worms compared with single lactic acid treatment. Moreover, mechanistic study suggested that in the presence of lactic acid, cinnamaldehyde could enhance the expressions of akt-2, age-1 to increase the antioxidant activities. In addition, we found that lactic acid was able to change the metabolic profile of cinnamaldehyde in C. elegans, characterized by nucleosides and amino acids, which were involved in the purine metabolism, the biosynthesis, and metabolism of some amino acids, etc. This study provides a theoretical basis for further revealing the functional activity and mechanism of cinnamaldehyde under acidic conditions.


Assuntos
Antioxidantes , Caenorhabditis elegans , Animais , Humanos , Lactente , Caenorhabditis elegans/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Aminoácidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
20.
Vet Microbiol ; 284: 109846, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586149

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important causative agents in the pig industry worldwide, causing reproductive failure in sows and respiratory problems in growing pigs. Glucose metabolism is a major pathway for energy production and interacts with many cellular processes, such as innate immunity response. It is unclear whether PRRSV infection can use the glucose metabolic pathway to generate immune escape in favor of viral replication. Here, we found that high glucose promotes PRRSV replication and glycolysis, and inhibits poly(I:C)-induced RLR signaling. Conversely, inhibition of the glycolysis pathway significantly promoted poly(I:C)-induced RLR signaling and inhibited PRRSV replication, suggesting that glycolysis promotes PRRSV replication by inhibiting interferon signaling. Furthermore, PRRSV promotes glycolysis to produce lactate, which acts as a key metabolite to promote viral replication by inhibiting RLR signaling by targeting MAVS. And the glycolytic inhibitors targeting HK2 and LDHA in glycolysis could inhibit PRRSV replication. Taken together, these findings suggested that PRRSV infection promotes glycolysis to produce lactate, which targets MAVS to inhibit RLR signaling and thus promote viral replication. Our findings provide an insight into the pathogenesis of PRRSV and offer a theoretical basis for further development of antiviral therapeutic targets.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Suínos , Animais , Feminino , Ácido Láctico , Antivirais , Replicação Viral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...